34 research outputs found

    Activity and Enantioselectivity of the Hydroxynitrile Lyase MeHNL in Dry Organic Solvents

    Get PDF
    Water concentration affects both the enantioselectivity and activity of enzymes in dry organic media. Its influence has been investigated using the hydrocyanation of benzaldehyde catalyzed by hydroxynitrile lyase cross-linked enzyme aggregate (MeHNL-CLEA) as a model reaction. The enzyme displayed higher enantioselectivity at higher water concentration, thus suggesting a positive effect of enzyme flexibility on selectivity. The activity increased on reducing the solvent water content, but drastic dehydration of the enzyme resulted in a reversible loss of activity

    Clinical relevance and biology of circulating tumor cells

    Get PDF
    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer

    Direct C-H Phosphonylation of Electron Rich Arenes and Heteroarenes by Visible-Light Photoredox Catalysis

    No full text
    The direct transformation of ubiquitous, but chemically inert C-H bonds into diverse functional groups is an important strategy in organic synthesis that improves the atom economy and faclitates the preparation and modification of complex molecules. In contrast to the wide applications of aryl phosphonates, their synthesis via direct C-H bond phosphonylation is a less explored area. We report here a general, mild, and broadly applicable visible-light photoredox C-H bond phosphonylation method for electron-rich arenes and heteroarenes. The photoredox catalytic protocol utilizes electron-rich arenes and biologically important heteroarenes as substrates, [Ru(bpz)(3)][PF6](2) as photocatalyst, ammonium persulfate as oxidant, and trialkyl phosphites as the phosphorus source to provide a wide range of aryl phosphonates at ambient temperature under very mild reaction conditions
    corecore